Problems based on Module –I (Metric Spaces)

- **Ex.1** Let d be a metric on X. Determine all constants K such that
 - (i) kd, (ii) d + k is a metric on X
- Ex.2. Show that

$$\left| d(x,y) - d(z,w) \right| \le d(x,z) + d(y,w) \text{ where } x, y, z, w \in (X,d).$$

- Ex.3. Find a sequence which converges to 0, but is not in any space ℓ^p where $1 \le p < \infty$.
- Ex.4. Find a sequence x which is in ℓ^p with p > 1 but $x \notin \ell^1$.
- Ex.5. Let (X,d) be a metric space and A,B are any two non empty subsets of X.Is

$$D(A,B) = \inf d(a,b)$$
$$a \in A , b \in B$$

a metric on the power set of X?

Ex.6. Let (X, d) be any metric space. Is (X, \overline{d}) a Metric space where $\overline{d} = d(x, y)/[1+d(x, y)]$.

Ex.7. Let (X_{1,d_1}) and (X_{2,d_2}) be metric Spaces and $X = X_1 \times X_2$. Are d as defined below

A metric on X?

(i)
$$\bar{d}(x,y) = d_1(x_1,y_1) + d_2(x_2,y_2)$$
; (ii) $\bar{d}(x,y) = \sqrt{d_1^2(x_1,y_1) + d_2^2(x_2,y_2)}$
(iii) $\bar{d}(x,y) = \max[d_1(x_1,y_1), d_2(x_2,y_2)]$, where $x = (x_1,x_2), y = (y_1,y_2)$

- Ex.8. Show that in a discrete metric space X, every subset is open and closed.
- Ex.9. Describe the closure of each of the following Subsets:(a) The integers on R.
 - (b) The rational numbers on R.
 - (c) The complex number with real and imaginary parts as rational in $\mathbb C$.
 - (d) The disk $\{z: |z| < 1\} \subset \mathbb{C}$.

- Ex.10.Show that a metric space X is separable if and only if X has a countable subset Y with the property: For every $\in > 0$ and every $x \in X$ there is a $y \in Y$ such that $d(x, y) < \in$.
- Ex.11. If (x_n) and (y_n) are Cauchy sequences in a metric space (X,d), show that (a_n) , where $a_n = d(x_n, y_n)$ converges.
- Ex.12. Let $a, b \in R$ and a < b. Show that the open interval (a, b) is an incomplete subspace of R.

Ex.13. Let X be the set of all ordered n - tuples $x = (\xi_1, \xi_2, \xi_n)$ of real numbers and $d(x, y) = \max_j |\xi_j - \eta_j|$ where $y = (\eta_j)$. Show that (X, d) is complete.

Ex.14. Let $M \subset \ell^{\infty}$ be the subspace consisting of all sequence $x = (\xi_j)$ with at most finitely many nonzero terms. Find a Cauchy sequence in M which does not converge in M, so that M is not complete.

Ex.15.Show that the set X of all integers with metric d defined by d(m,n) = |m-n| is a complete metric space.

Ex.16.Let X be the set of all positive integers and $d(m,n) = |m^{-1} - n^{-1}|$. Show that (X,d) is not complete.

- Ex.17. Show that a discrete metric space is complete.
- Ex.18.Let X be metric space of all real sequences $x = (\xi_j)$ each of which has only finitely Nonzero terms, and $d(x, y) = \sum |\xi_j - \eta_j|$, when $y = (\eta_j)$. Show that $(x_n), x_n = (\xi_j^{(n)}), \xi_j^{(n)} = j^{-2}$ for j = 1, 2..., n and $\xi_j^{(n)} = 0$ for j > n is Cauchy but does not converge.
- Ex.19. Show that,by given a example ,that a complete and an incomplete metric spaces may be Homeomorphic.

Ex.20. If (X, d) is complete, show that (X, \bar{d}) , where $\bar{d} = \frac{d}{1+d}$ is complete.

<u>HINTS</u> (Problems based on Module –I)

Hint.1: Use definition . Ans (i) k>0 (ii) k=0

Hint.2: Use Triangle inequality $d(x, y) \le d(x, z) + d(z, w) + d(w, y)$

Similarity,
$$d(z,w) \le d(z,x) + d(x,y) + d(y,w)$$

Hint.4: Choose $x = (x_k)$ where $x_k = \frac{1}{k}$

Hint.5: No. Because $D(A,B)=0 \neq A=B$ e.g. Choose $\begin{aligned} A &= \{a, a_1, a_2, \dots, \} \\ B &= \{a, b_1, b_2, \dots, \} \end{aligned}$ where $a_i \neq b_i$ clearly $A \neq B$ but D=(A,B)=0 & $A \cap B \neq \phi$.

Hint.6: Yes. ; Hint.7: Yes.

Hint.8: Any subset is open since for any $a \in A$, the open ball $B\left(a, \frac{1}{2}\right) = \{a\} \subset A$. Similarly A^c is open, so that $(A^c)^c = A$ is closed.

Hint.9: use Definition.

Ans (a) The integer, (b) R, (c) \mathbb{C} , (d) $\{z : |z| \le 1\}$.

- Hint.10:Let X be separable .So it has a countable dense subset Y i.e. $\overline{Y} = X$.Let $x \in X \& \in > 0$ be given.Since Y is dense in X and $x \in \overline{Y}$, so that the \in neibourhood $B(x; \in)$ of x contains a $y \in Y$, and $d(x, y) < \in$.Conversely, if X has a countable subset Y with the property given in the problem, every $x \in X$ is a point of Y or an accumulation point of Y. Hence $x \in Y$, s result follows .
- Hint.11:Since $|a_n a_m| = |d(x_n, y_n) d(x_m, y_m)|$

 $\leq d(x_n, x_m) + d(y_n, y_m) \rightarrow o$ as $n \rightarrow \infty$ which shows that (a_n) is a Cauchy sequence of real numbers. Hence convergent.

Hint.12:Choose $(a_n) = \left(a + \frac{1}{n}\right)$ which is a Cauchy sequence in (a,b) but does not converge.

Hint.14:Choose (x_n) , where $x_n = \left(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, 0...\right)$ which is Cauchy in *M* but does not converge.

Hint.15:Consider a sequence $x \equiv x \equiv (x_k) = (\alpha_1, \alpha_2..., \alpha_{ni}, \alpha, \alpha...)$

Where $x_k = \alpha$ for $k \ge n, \alpha$ is an integer. This is a Cauchy and converges to $\alpha \in X$. Hint.16: Choose (x_n) when $x_n = n$ which is Cauchy but does not converge.

Hint.17: Constant sequence are Cauchy and convergent.

Hint.18: For every $\in > 0$, there is an N *s.t.* for n > m > N,

$$d(x_n, x_m) = \sum_{j=m+1}^n \frac{1}{j^2} < \epsilon.$$

But (x_n) does not converge to any $x = (\xi_j) \in X$
Because $\xi_j = 0$ for $j > N$ so that for $n > N$,

$$d(x_n, x) = \left|1 - \xi_1\right| + \left|\frac{1}{4} - \xi_2\right| + \dots + \frac{1}{\left(\bar{N+1}\right)^2} + \dots + \frac{1}{n^2} > \frac{1}{\left(\bar{N+1}\right)^2}$$

And

$$d(x_n, x) \rightarrow 0 \text{ as } n \rightarrow \infty \text{ is impossible}$$

Hint.19: (Def) A homeomorphism is a continuous bijective mapping.

 $T: X \to Y$ whose inverse is continuous; the metric space X and Y are then said to be homeomorphic. *e.g.* A mapping $T: R \to (-1,1)$ defined as $Tx = \frac{2}{\pi} \tan^{-1} x$ with metric d(x, y) = |x - y| on R. Clearly T is 1-1, into & bi continuous so $R \cong (-1,1)$ But R is complete while (-1,1) is an incomplete metric space.

Hint.20:

$$\bar{d} = (x_m, x_n) < \in < \frac{1}{2}$$
 then

$$d(x_m, x_n) = \frac{\overline{d}(x_m, x_n)}{1 - \overline{d}(x_m, x_n)} < 2d(x_m, x_n).$$

Hence if (x_n) is Cauchy is (X, \overline{d}) , it is Cauchy in (X, d), and its limit in (X, \overline{d}) .

Problems on Module-II (Normed and Banach Spaces)

- Ex.-1. Let $(X, \|\|\|_i)$, i= 1, 2, ∞ be normed spaces of all ordered pairs $x=(\xi_1,\xi_2)$, $y=(\eta_1,\eta_2)$,.... of real numbers where $\|\|\|_i$, i= 1,2, ∞ are defined as $\|x\|_1 = |\xi_1| + |\xi_2|$; $\|x\|_2 = (\xi_1^2 + \xi_2^2)^{1/2}$; $\|x\|_{\infty} = \max(|\xi_1|, |\xi_2|)$ How does unit sphere in these norms look like?
- Ex.-2. Show that the discrete metric on a vector space $X \neq \{0\}$ can not be obtained from a norm.
- Ex.-3. In ℓ^{∞} , let Υ be the subset of all sequences with only finitely many non zero terms. Show that Υ is a subspace of ℓ^{∞} but not a closed subspace.
- Ex.-4. Give examples of subspaces of ℓ^{∞} and ℓ^{2} which are not closed.
- Ex.-5. Show that \mathfrak{R}^n and \mathbb{C}^n are not compact.
- Ex.-6. Show that a discrete metric space X consisting of infinitely many points is not compact.
- Ex.-7. Give examples of compact and non compact curves in the plane \Re^2 .
- Ex.-8. Show that \Re and \mathbb{C} are locally compact.
- Ex.-9. Let X and Y be metric spaces. X is compact and $T: X \rightarrow Y$ bijective and continuous. Show that T is homeomorphism.
- Ex.-10. Show that the operators $T_1, T_2, ..., T_4$ from R^2 into R^2 defined by $(\xi_1, \xi_2) \rightarrow (\xi_1, 0), \rightarrow (0, \xi_2), \rightarrow (\xi_2, \xi_1)$ and $\rightarrow (\sqrt{\xi_1}, \sqrt{\xi_2})$ respectively, are linear.
- Ex.-11. What are the domain, range and null space of T_1, T_2, T_3 in exercise 9.
- Ex.-12. Let $T: X \to Y$ be a linear operator. Show that the image of a subspace V of X is a vector space, and so is the inverse image of a subspace W of X.
- Ex.-13. Let X be the vector space of all complex 2×2 matrices and define $T : X \to X$ by Tx=bx, where $b \in X$ is fixed and bx denotes the usual product of matrices. Show that T is linear. Under what condition does T⁻¹ exist?

- Ex.-14. Let $T: D(T) \to Y$ be a linear operator whose inverse exists. If $\{x_1, x_2, ..., x_n\}$ is a Linearly Independent set in D(T), show that the set $\{Tx_1, Tx_2, ..., Tx_n\}$ is L.I.
- Ex.-15. Let $T: X \to Y$ be a linear operator and dim $X = \dim Y = n < \infty$. Show that $R(T) = Y \Leftrightarrow T^{-1}$ exists.
- Ex.-16. Consider the vector space X of all real-valued functions which are defined on R and have derivatives of all orders everywhere on R. Define $T: X \to X$ by y(t)=Tx(t)=x'(t), show that R(T) is all of X but T⁻¹ does not exist.
- Ex.-17. Let X and Y be normed spaces. Show that a linear operator $T: X \rightarrow Y$ is bounded if and only if T maps bounded sets in X into bounded set in Y.
- Ex.-18. If $T \neq 0$ is a bounded linear operator, show that for any $x \in D(T)$ s.t. ||x|| < 1 we have the strict inequality ||Tx|| < ||T||.
- Ex.-19. Show that the functional defined on C[a, b] by $f_1(x) = \int_a^b x(t)y_0(t)dt; f_2(x) = x(a) + \beta x(b)$, where $y_0 \in C[a,b], \alpha, \beta$ fixed are linear and bounded.
- Ex.-20. Find the norm of the linear functional f defined on C[-1,1] by

 $f(x) = \int_{-1}^{0} x(t) dt - \int_{0}^{1} x(t) dt \, .$

HINTS (Problems on Module-II)

Hint.2:

- $\therefore d(x, y) = \begin{cases} 0 & if \quad x = y \\ 1 & if \quad x \neq y \end{cases}, \text{ where } d(\alpha x, \alpha y) \neq |\alpha| d(x, y) \\ \text{Hint.3: Let } x^{(n)} = (1, \frac{1}{2}, \frac{1}{3}, \dots, 1/n, 0, 0, \dots) = (x_j^{(n)}) \text{ where } x_j^{(n)} \text{ has 0 value after } j > n. \\ \text{Clearly } x^{(n)} \in \ell^{\infty} \text{ as well as } x^{(n)} \in \Upsilon \text{ but } \lim_{n \to \infty} x^{(n)} \notin \Upsilon. \end{cases}$
- Hint.4: Let Υ be the subset of all sequences with only finitely many non zero terms. e.g. $\Upsilon = \{x^{(n)} = (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, \dots), n = 1, 2, \dots\} \subset \ell^{\infty} \& \subset \ell^{2}$ but not closed.

Hint.6: By def. of Discrete metric, any sequences (x_n) cannot have convergent subsequence as $d(x_i, x_j) = 1$ if $i \neq j$.

- Hint.7: As \Re^2 is of finite dimension, So every closed & bounded set is compact. Choose $X = \{(x, y) = a_1 \le x \le b_1, a_2 \le x \le b_1\}$ which is compact But $\{(x, y) = a_1 < x < b_1, a_1 < y < b_2\}$ is not compact.
- Hint.8: (def.) A metric space X is said to be locally compact if every point of X has a compact neighbourhood. Result follows (obviously).
- Hint.9: Only to show T⁻¹ is continuous i.e. Inverse image of open set under T⁻¹ is open. OR. If $\gamma_n \to \gamma$. Then T⁻¹(γ_n) \to T⁻¹(γ). It will follow from the fact that X is compact.

- Hint.11: The domain is \Re^2 . The ranges are the ξ_1 -axis, the ξ_2 -axis, \Re^2 . The null spaces are the ξ_2 -axis, the ξ_1 -axis, the origin.
- Hint.12. Let $Tx_1, Tx_2 \in T(V)$. Then $x_1, x_2 \in V, \alpha x_1 + \beta x_2 \in V$. Hence $T(\alpha x_1 + \beta x_2) = \alpha T x_1 + \beta T x_2 \in T(V)$. Let x_1, x_2 be in that inverse image. Then $Tx_1, Tx_2 \in W, \alpha T x_1 + \beta T x_2 \in W, \alpha T x_1 + \beta T x_2 = T(\alpha x_1 + \beta x_2)$, so that $\alpha x_1 + \beta x_2$ is an element of that inverse image.

Hint.13. $|b| \neq 0$

- Hint. 14. If $\{Tx_1, Tx_2, \dots, Tx_n\}$ is not L.I. then \ni some $\alpha_i \neq 0$ $\alpha_1 Tx_1 + \dots + \alpha_i Tx_i + \dots + \alpha_n Tx_n = 0$. Since T⁻¹ exists and linear, $T^{-1}(\alpha_1 Tx_1 + \dots + \alpha_n Tx_n) = \alpha_1 x_1 + \dots + \alpha_n x_n = 0$ when $\alpha_i \neq 0$ which shows $\{x_1, x_2, \dots, x_n\}$ is L.D., a contradiction.
- Hint.16: R (T) =X since for every $y \in X$ we have y=Tx, where $x(t) = \int_0^t y(\tau) d\tau$. But n T⁻¹ does not exist since Tx=0 for every constant function.
- Hint.17: Apply definition of bounded operator.
- Hint.18: Since $||Tx|| = ||T|| \cdot ||x|| < ||T||$ as ||x|| < 1.
- Hint.20: $|f(x)| \le 2||x||, \therefore ||f|| \le 2$. For converse, choose x(t) = -1 on [-1,1]. So ||x|| = 1

$$||f|| \ge \left| -\int_{-1}^{0} dt + \int_{0}^{1} dt \right| = 2 \quad \therefore ||f|| = 2.$$

Problems on Module III (IPS/Hilbert space)

- Ex.-1. If $x \perp y$ in an IPS X,Show that $||x + y||^2 = ||x||^2 + ||y||^2$.
- Ex.-2. If X in exercise 1 is a real vector space, show that ,conversely, the given relation implies that $x \perp y$. Show that this may not hold if X is complex. Give examples.
- Ex,-3. If an IPS X is real vector space, show that the condition ||x|| = ||y|| implies $\langle x + y, x y \rangle = 0$. What does this mean geometrically if X=R²?
- Ex.-4. (Apollonius identity): For any elements x, y, z in an IPS X, show that $\|z - x\|^2 + \|z - y\|^2 = \frac{1}{2} \|x - y\|^2 + 2 \|z - \frac{1}{2}(x + y)\|^2.$
- Ex.-5. Let $x \neq 0$ and $y \neq 0$. If $x \perp y$, show that $\{x,y\}$ is a Linearly Independent set.
- Ex.-6. If in an IPS X, $\langle x, u \rangle = \langle x, v \rangle$ for all x, show that u=v.
- Ex.-7. Let X be the vector space of all ordered pairs of complex numbers. Can we obtain the norm defined on X by $||x|| = |\xi_1| + |\xi_2|$, $x = (\xi_1, \xi_2) \in X$ from an Inner product?
- Ex.-8. If X is a finite dimensional vector space and (e_j) is a basis for X, show that an inner product on X is completely determined by its values $\gamma_{jk} = \langle e_j, e_k \rangle$. Can we choose scalars γ_{jk} in a completely arbitrary fashion?
- Ex.-9. Show that for a sequence (x_n) in an IPS X, the conditions $||x_n|| \rightarrow ||x||$ and $\langle x_n, x \rangle \rightarrow \langle x, x \rangle$ imply convergence $x_n \rightarrow x$.
- Ex.-10. Show that in an IPS X, $x \perp y \Leftrightarrow$ we have $||x + \alpha y|| = ||x - \alpha y||$ for all scalars α .
- Ex.-11. Show that in an IPS X, $x \perp y \Leftrightarrow ||x + \alpha y|| \ge ||x||$ for all scalars.
- Ex.-12. Let V be the vector space of all continuous complex valued functions on J=[a, b]. Let $X_1 = (V, \|...\|_{\infty})$, where $\|x\|_{\infty} = \max_{t \in J} |x(t)|$; and let $X_2 = (V, \|...\|_2)$, where $\|x\|_2 = \langle x, x \rangle^{\frac{1}{2}}, \langle x, y \rangle = \int_a^b x(t) \overline{y(t)} dt$. Show that the identity mapping $x \mapsto x$ of X_1 onto X_2 is continuous. Is it Homeomorphism?

Ex.-13. Let H be a Hilbert space, $M \subset H$ a convex subset, and (x_n) is a sequence in M

such that $||x_n|| \to d$, where $d = \inf_{x \in M} ||x||$. Show that (x_n) converges in H.

- Ex.-14. If (e_k) is an orthonormal sequence in an IPS X, and $x \in X$, show that x-y with y given by $y = \sum_{1}^{n} \alpha_{k} e_{k}, \alpha_{k} = \langle x, e_{k} \rangle$ is orthogonal to the subspace $Y_{n} = span\{e_{1}, e_{2}, \dots, e_{n}\}.$
- Ex.-15. Let (e_k) be any orthonormal sequence in an IPS X. Show that for any $x, y \in X$, $\sum_{k=1}^{\infty} |\langle x, e_k \rangle \langle y, e_k \rangle| \leq ||x|| ||y||.$
- Ex.-16. Show that in a Hilbert Space H,convergence of $\sum ||x_j||$ implies convergence of $\sum x_j$

Hints on Problems on Module III

Hint.1: Use $||x||^2 = \langle x, x \rangle$ and the fact that $\langle x, y \rangle = 0$, if $x \perp y$.

Hint. 2 : By Assumption,

$$0 = \langle x + y, x + y \rangle - \|x\|^{2} - \|y\|^{2} = \langle x, y \rangle + \overline{\langle x, y \rangle} = 2 \operatorname{Re} \langle x, y \rangle.$$

Hint.3: Start $\langle x + y, x - y \rangle = \langle x, x \rangle + \langle y, -y \rangle = ||x||^2 - ||y||^2 = 0$ as X is real.

Geometrically: If x & y are the vectors representing the sides of a parallelogram, then x+y and x-y will represent the diagonal which are \perp .

Hint 4: Use $||x||^2 = \langle x, x \rangle$ OR use parallelogram equality.

Hint.5: Suppose $\alpha_1 x + \alpha_2 y = 0$ where α_1, α_2 are scalars. Consider

$$\langle \alpha_1 x + \alpha_2 y, x \rangle = \langle 0, x \rangle$$

 $\Rightarrow \alpha_1 \|x\|^2 = 0 \text{ as } \langle x, y \rangle = 0.$
 $\Rightarrow \alpha_1 = 0 \text{ as } \|x\| \neq 0.$ Similarly, one can show that $\alpha_2 = 0.$ So $\{x, y\}$ is L.I.set

Hint.6 : Given $\langle x, u - v \rangle = 0$.Choose x=u-v. $\Rightarrow ||u - v||^2 = 0 \Rightarrow u = v.$

Hint. 7: No. because the vectors x = (1,1), y = (1,-1) do not satisfy parallelogram equality.

Hint.8: Use
$$x = \sum_{i=1}^{n} \alpha_i e_i$$
 & $y = \sum_{j=1}^{n} \alpha_j e_j$.Consider $\langle x, y \rangle = \langle \sum_{i=1}^{n} \alpha_i e_i, \sum_{j=1}^{n} \alpha_j e_j \rangle$
Open it so we get that it depends on $\gamma_{jk} = \langle e_j, e_k \rangle$
II Part: Answer:- NO. Because $\gamma_{jk} = \langle e_j, e_k \rangle = \langle \overline{e_k}, \overline{e_j} \rangle = \overline{\gamma_{kj}}$.

Hint.9: We have

$$\|x_n - x\|^2 = \langle x_n - x, x_n - x \rangle$$

= $\|x_n\|^2 - \langle x_n, x \rangle - \langle x, x_n \rangle + \|x\|^2$
 $\Rightarrow 2\|x\|^2 - 2 \langle x, x \rangle = 0 \text{ as } n \to \infty.$

Hint.10: From

 $\langle x \pm \alpha y, x \pm \alpha y \rangle = ||x||^{2} \pm \overline{\alpha} \langle x, y \rangle \pm \alpha \langle y, x \rangle + |\alpha|^{2} ||y||^{2} \text{ condition follows as}$ $x \perp y.$ Conversely, $||x + \alpha y|| = ||x - \alpha y||$ $\Rightarrow \overline{\alpha} \langle x, y \rangle + \alpha \langle y, x \rangle = 0.$ Choose $\alpha = 1$ if the space is real which implies $x \perp y$. Choose $\alpha = 1, \alpha = i$, if the space is complex then we get $\langle x, y \rangle = 0 \Rightarrow x \perp y.$

Hint.11: Follows from the hint given in Ex.-10.

Hint.12 : Since $\|x\|_{2}^{2} = \int_{a}^{b} |x(t)|^{2} dt \leq (b-a) \|x\|_{\infty}^{2} - \dots - (A)$ Suppose $x_{n} \to 0$ in X_{1} i.e. $\|x_{n}\|_{\infty} \to 0$ as $n \to \infty$. So by (A), $x_{n} \xrightarrow{X_{2}}{will} \to 0$. Hence I is continuous. Part-II: Answer No. because X_{2} is not complete.

Hint.13 : (x_n) is Cauchy, since from the assumption and the parallelogram equality, we have,

$$\begin{aligned} \|x_n - x_m\|^2 &= 2 \|x_m\|^2 + 2 \|x_n\|^2 - \|x_n + x_m\|^2 \\ &\leq 2 \|x_m\|^2 + 2 \|x_n\|^2 - 4d^2 \text{ (since M is convex so} \\ \frac{x_n + x_m}{2} &\in M \therefore \left\|\frac{x_n + x_m}{2}\right\|^2 \geq d^2 \because \inf \|x_n\| = d, x_n \in M \text{).} \end{aligned}$$

Hint.14: $y \in Y_n, x = y + (x - y)$, and $x - y \perp e_m$, Since $\langle x - y, e_m \rangle = \langle x - \sum \alpha_k e_k, e_m \rangle$ $= \langle x, e_m \rangle - \alpha_m = 0$.

Hint.15: Use Cauchy Schwaz's Inequality & Bessel's Inequality, we get

$$\sum_{k=1}^{k} |\langle x, e_{k} \rangle \langle y, e_{k} \rangle| = (\sum_{k=1}^{k} |\langle x_{1}e_{k} \rangle|^{2})^{\overline{2}} (\sum_{k=1}^{k} |\langle y, e_{k} \rangle|^{2})^{\overline{2}} \leq ||x|| ||y||.$$

Hint.16: Let
$$\delta_n = x_1 + x_2 + \dots + x_n$$

 $\|\delta_n - \delta_m\| \le \sum_{j=m}^n \|x_j\| \le \sum_{j=m}^\infty \|x_j\| \to 0$ as $m \to \infty$.So
 (δ_n) is a Cauchy. Since H is complete, hence (δ_n) will converge
 $\therefore \sum x_j$ converge in H.

Problems On Module <u>IV</u> (On Fundamental theorems)

- Ex.1. Let $f_n : \ell^1 \to R$ be a sequence of bounded linear functionals defined as $f_n(x) = \xi_n$ where $x = (\xi_n) \in \ell^1$ show that (f_n) converge strongly to 0 but not uniformly.
- Ex.2. Let $T_n \in B(X, Y)$ where X is a Banach space and Y a normed space. If (T_n) is strongly convergent with limit T, then $T \in B(X, Y)$.
- Ex.3. If $x_n \in C[a,b]$ and $x_n \xrightarrow{\omega} x \in C[a,b]$. Show that (x_n) is point wise convergent on [a,b].
- Ex.4. If $x_n \xrightarrow{\omega} x_o$ in a normed space X. Show that $x_o \in \overline{Y}$, Where Y= span (x_n) .
- Ex.5. Let $T_n = S^n$, where the operator $S : \ell^2 \to \ell^2$ is defined by $S\{(\xi_n, \xi_2, \xi_3...)\} = (\xi_3, \xi_4...)$. Find a bound for $||T_n x||$; $\lim_{n \to \infty} ||T_n x||$, $||T_n||$ and $\lim_{n \to \infty} ||T_n||$.
- Ex.6. Let X be a Banach space, Y a normed space and $T_n \in B(X,Y)$ such that $(T_n x)$ is Cauchy in Y for every $x \in X$. show that $(||T_n||)$ is bounded.
- Ex.7. If (x_n) in a Banach space X is such that $(f(x_n))$ is bounded for all $f \in X'$. Show that $(||x_n||)$ is bounded.
- Ex.8. If a normed space X is reflexive, Show that X' is reflexive.
- Ex.9. If x_o in a normed space X is such that $|f(x_o)| \le c$ for all $f \in X'$ of norm1.show that $||x_o|| \le c$.
- Ex.10. Let Y be a closed sub space of a normed space X such that every $f \in X'$ which is zero every where on Y is zero every where on the whole space X. Show that Y = X
- Ex.11. Prove that $(S + T)^{\times} = S^{\times} + T^{\times}; (\alpha T)^{\times}; (\alpha T)^{\times} = \alpha T^{\times}$ Where T^{\times} is the adjoint operator of T.
- Ex.12. Prove $(ST)^{\times} = T^{\times}S^{\times}$

- Ex.13. Show that $(T^n)^{\times} = (T^{\times})^n$.
- Ex.14. Of what category is the set of all rational number (a) in \mathbb{R} , (b) in itself, (Taken usual metric).
- Ex.15. Find all rare sets in a discrete metric space X.
- Ex.16. Show that a subset M of a metric space X is rare in X if and only if is $(\bar{M})^{c}$ is dense in X.
- Ex.17. Show that completeness of X is essential in uniform bounded ness theorem and cannot be omitted.

Hints on Problems On Module IV

Hint.1: Since $x \in \ell^1 \Rightarrow \sum_{1}^{\infty} |\xi_n| < \infty \Rightarrow |\xi_n| \to 0$ as $n \to \infty$.

ie $f_n(x) \to 0$ as $n \to \infty$ but $||f_n|| = 1 \not\to 0$.

Hint.2 *T* linear follows

$$\lim_{n\to\infty} T_n(\alpha x + py) = \lim_{n\to\infty} \{(\alpha T_n x) + (\beta T_n x)\} \Longrightarrow T(\alpha x + \beta y) = \alpha T x + \beta T y .$$

T is bounded :- Since $T_n \xrightarrow{s} T$ i.e. $\|(T_n - T)x\| \to 0$ for all $x \in X$.

So $(T_n x)$ is bounded for every *x*. Since X is complete, so $(||T_n||)$ is bounded by uniform bounded ness theorem. Hence

 $||T_n x|| \le ||T_n|| ||x|| \le M ||x||$. Taking limit \Rightarrow *T* is bounded.

Hint .3 : A bounded linear functional on C[a,b] is δ_{t_0} defined by $\delta_{t_o}(x) = x(t_o)$, when $t_o \in [a,b]$.

Given
$$x_n \xrightarrow{\omega} x \Rightarrow \left| \delta_{t_o}(x_n) - \delta_{t_o}(x) \right| \to 0 \text{ as } n \to \infty \Rightarrow x_n(t_o) \to x(t_o) \text{ as } n \to \infty.$$

Hint.4: Use Lemma:- "Let Y be a proper closed sub-space of a normed space X and let $x_o \in X - Y$ be arbitrary point and $\delta = \inf_{\overline{y} \in Y} \left\| \overline{y} - x_o \right\| > 0$, then there exists an $\overline{f} \in X'$, dual of X such that $\left\| \overline{f} \right\| = 1, \overline{f}(y) = 0$ for all $y \in Y$ and $\overline{f}(x_o) = \delta$."

suppose $x_o \notin Y$ which is a closed sub space of X. so by the above result,

for
$$x \in X - Y$$
, $\delta = \inf_{\overline{y} \in Y} \left\| \overline{y} - x_o \right\| > 0$, hence there exists $\overline{f} \in X'$ s.t. $\left\| \overline{f} \right\| = 1 \& \overline{f}(x_n) = 0$
for $x_n \in \overline{Y}$. Also $\overline{f}(x_o) = \delta$. So $\overline{f}(x_n) \not\prec f(x_o)$ which is a contradiction that $x_n \stackrel{\omega}{\to} x_o$.

Hint.5: $T_n = S^n$. $T_n(x) = (\xi_{2n+1}, \xi_{2n+2},...)$ (i) $||T_n x||^2 = \sum_{k=2n+1}^{\infty} |\xi_k|^2 \le \sum_{k=1}^{\infty} |\xi_k|^2 = ||x||^2 \Rightarrow ||T_n x|| \le ||x||$. (ii) $\lim_{n \to \infty} ||T_n x|| = 0$. (iii) $||T_n|| \le 1$ as $||T_n x|| \le ||x||$. For converse, choose $x = (0, 0, ..., \frac{1}{(2n+1)place}, 0....)$ so $||T_n|| \ge 1$. $\therefore ||T_n|| = 1$. (v) $\lim_{n \to \infty} ||T_n|| = 1$.

Hint. 6: Since $(T_n x)$ is Cauchy in Y for every x, so it is bounded for each $x \in X$. Hence by uniform bounded ness theorem, $(||T_n||)$ is bounded.

- Hint.7: Suppose $f(x_n) = g_n(f)$. Then $\{g_n(f)\}$ is bounded for every $f \in X'$. So by uniform bounded ness theorem $(||g_n||)$ is bounded and $||x_n|| = ||g_n||$.
- Hint. 8: Let $h \in X'''$. For every $g \in X''$ there is an $x \in X$ such that g = Cx since X is reflexive. Hence h(g) = h(Cx) = f(x) defines a bounded linear functional f on X and $C_1 f = h$, where $C_1 : X' \to X'''$ is the canonical mapping. Hence C_1 is surjective, so that X' is reflexive.
- Hint. 9: suppose $||x_o|| > c$. Then by Lemma: Let X be a normed space and let $x_o \neq 0$ be any element of X. Then there exist a bounded linear functional \tilde{f} on $Xs.t.||\tilde{f}|| = 1 \& \tilde{f}(x_o) = ||x_o||$. $||x_o|| > c$ would imply the existence of an $\tilde{f} \in X'$ s.t. $||\tilde{f}|| = 1$ and $\tilde{f}(x_o) = ||x_o|| > c$.

Hint. 10: If $Y \neq X$, there is an $x_o \in X - Y$, and $\delta = \inf_{y \in Y} ||y - x_o|| > 0$ since Y is closed. Use the Lemma as given in Ex 4 (Hint). By this Lemma, there is on $f \in X'$ which is zero on Y but not zero at x_o , which contradicts our assumption.

- Hint. 11: $((S+T)^{\times}g)(x) = g((S+T)x) = g(Sx) + g(Tx) = (S^{\times}g)(x) + (T^{\times}g)(x)$. Similarly others.
- Hint. 12: $((ST)^*g)(x) = g(STx) = (S^*g)(Tx) = (T^*(S^*g))(x) = (T^*S^*g)(x).$
- Hint. 13: Follows from Induction.
- Hint 14 : (a) first (b) first.
- Hint.15 : ϕ , because every subset of X is open.
- Hint. 16 : The closure of $(\bar{M})^c$ is all of X if and if \bar{M} has no interior points, So that every $x \in \bar{M}$ is a point of accumulation of $(\bar{M})^c$.

Hint.17: Consider the sub space $X \subset \ell^{\infty}$ consisting of all $x = (\xi_j) s.t.\xi_j = 0$ for $j \ge J \in \mathbb{N}$, where J depends on x, and let T_n be defined by $T_n x = f_n(x) = n \quad \xi_n$. Clearly $(||T_n X||)$ is bounded $\forall x$ but $||T_n||$ is not bounded.