## Problems based on Module -I (Metric Spaces)

Ex. 1 Let d be a metric on X. Determine all constants K such that
(i) kd ,
(ii) $d+k$ is a metric on $X$

Ex.2. Show that
$|d(x, y)-d(z, w)| \leq d(x, z)+d(y, w)$ where $x, y, z, w \in(X, d)$.
Ex.3. Find a sequence which converges to 0 , but is not in any space $\ell^{p}$ where $1 \leq p<\infty$.

Ex.4. Find a sequence $x$ which is in $\ell^{p}$ with $p>1$ but $x \notin \ell^{1}$.
Ex.5. Let $(\mathrm{X}, \mathrm{d})$ be a metric space and $\mathrm{A}, \mathrm{B}$ are any two non empty subsets of X .Is

$$
\begin{aligned}
\mathrm{D}(\mathrm{~A}, \mathrm{~B}) & =\inf d(a, b) \\
a & \in A, b \in B
\end{aligned}
$$

a metric on the power set of $X$ ?
Ex.6. Let ( $\mathrm{X}, \mathrm{d}$ ) be any metric space. Is $(X, \bar{d})$ a Metric space where $\bar{d}=d(x, y) /[1+d(x, y)]$.
Ex.7. Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2,} d_{2}\right)$ be metric Spaces and $X=X_{1} \times X_{2}$. Are $\bar{d}$ as defined below
A metric on X ?
(i) $\bar{d}(x, y)=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)$; (ii) $\bar{d}(x, y)=\sqrt{d_{1}^{2}\left(x_{1}, y_{1}\right)+d_{2}{ }^{2}\left(x_{2}, y_{2}\right)}$
(iii) $\bar{d}(x, y)=\max \left[d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right]$, where $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$

Ex.8. Show that in a discrete metric space X , every subset is open and closed.
Ex.9. Describe the closure of each of the following Subsets:
(a) The integers on R.
(b) The rational numbers on R .
(c) The complex number with real and imaginary parts as rational in $\mathbb{C}$.
(d) The disk $\{z:|z|<1\} \subset \mathbb{C}$.

Ex.10. Show that a metric space X is separable if and only if X has a countable subset Y with the property: For every $\in>0$ and every $x \in \mathrm{X}$ there is a $y \in Y$ such that $d(x, y)<\epsilon$.
Ex.11. If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequences in a metric space $(X, d)$, show that $\left(a_{n}\right)$, where $a_{n}=d\left(x_{n}, y_{n}\right)$ converges.

Ex.12. Let $a, b \in R$ and $a<b$. Show that the open interval $(a, b)$ is an incomplete subspace of $R$.
Ex.13. Let $X$ be the set of all ordered $n$-tuples $x=\left(\xi_{1}, \xi_{2, \ldots, \ldots, \ldots,}, \xi_{n}\right)$ of real numbers and

$$
d(x, y)=\max _{j}\left|\xi_{j}-\eta_{j}\right|
$$

where $y=\left(\eta_{j}\right)$. Show that $(X, d)$ is complete.
Ex.14. Let $M \subset \ell^{\infty}$ be the subspace consisting of all sequence $x=\left(\xi_{j}\right)$ with at most finitely many nonzero terms .Find a Cauchy sequence in $M$ which does not converge in $M$,so that $M$ is not complete.

Ex.15.Show that the set X of all integers with metric $d$ defined by $d(m, n)=|m-n|$ is a complete metric space.

Ex.16. Let $X$ be the set of all positive integers and $d(m, n)=\left|m^{-1}-n^{-1}\right|$.
Show that $(X, d)$ is not complete.

Ex.17. Show that a discrete metric space is complete.
Ex.18.Let X be metric space of all real sequences $x=\left(\xi_{j}\right)$ each of which has only finitely Nonzero terms, and $d(x, y)=\Sigma\left|\xi_{j}-\eta_{j}\right|$, when $y=\left(\eta_{j}\right)$. Show that $\left(x_{n}\right), x_{n}=\left(\xi_{j}^{(n)}\right)$, $\xi_{j}^{(n)}=j^{-2}$ for $j=1,2 . ., n$ and $\xi_{j}^{(n)}=0$ for $j>n$ is Cauchy but does not converge.

Ex.19. Show that,by given a example ,that a complete and an incomplete metric spaces may be Homeomorphic.
Ex.20. If $(X, d)$ is complete, show that $(X, \bar{d})$, where $\bar{d}=\frac{d}{1+d}$ is complete.

## HINTS (Problems based on Module -I)

Hint.1: Use definition. Ans (i) $\mathrm{k}>0 \quad$ (ii) $\mathrm{k}=0$
Hint.2: Use Triangle inequality $\mathrm{d}(x, y) \leq d(x, z)+d(z, w)+d(w, y)$

Similarity, $d(z, w) \leq d(z, x)+d(x, y)+d(y, w)$

Hint.4: Choose $x=\left(x_{k}\right)$ where $x_{k}=\frac{1}{k}$
Hint.5: No. Because $\mathrm{D}(\mathrm{A}, \mathrm{B})=0 \neq>\mathrm{A}=\mathrm{B}$ e.g. Choose $\begin{aligned} & A=\left\{a, a_{1}, a_{2} \ldots \ldots .\right\} \\ & B=\left\{a, b_{1}, b_{2} \ldots \ldots .\right\}\end{aligned}$ where $a_{i} \neq b_{i}$ clearly $A \neq B$ but $\mathrm{D}=(\mathrm{A}, \mathrm{B})=0 \& A \cap B \neq \phi$.

Hint.6: Yes. ; Hint.7: Yes.
Hint.8: Any subset is open since for any $a \in A$, the open ball $B\left(a, \frac{1}{2}\right)=\{a\} \subset A$.
Similarly $\quad A^{c}$ is open, so that $\left(A^{c}\right)^{c}=A$ is closed.
Hint.9: use Definition.
Ans (a) The integer, (b) R , (c) $\mathbb{C}$, (d) $\{z:|z| \leq 1\}$.
Hint.10:Let X be separable .So it has a countable dense subset Y i.e. $\bar{Y}=X$. Let $x \in X \& \in>0$ be given. Since Y is dense in X and $x \in \bar{Y}$, so that the $\in$ neibourhood $B(x ; \in)$ of x contains a $y \in Y$, and $d(x, y)<\epsilon$. Conversely, if X has a countable subset Y with the property given in the problem, every $x \in X$ is a point of Y or an accumulation point of Y . Hence $x \in Y, \mathrm{~s}$ result follows .
Hint.11:Since $\left|a_{n}-a_{m}\right|=\left|d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right)\right|$ $\leq d\left(x_{n}, x_{m}\right)+d\left(y_{n}, y_{m}\right) \rightarrow o$ as $\mathrm{n} \rightarrow \infty$ which shows that $\left(a_{n}\right)$ is a Cauchy sequence of real numbers. Hence convergent.
Hint.12: Choose $\left(a_{n}\right)=\left(a+\frac{1}{n}\right)$ which is a Cauchy sequence in $(a, b)$ but does not converge.
Hint.14:Choose $\left(x_{n}\right)$, where $x_{n}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, 0,0 \ldots\right)$ which is Cauchy in $M$ but does not converge.
Hint.15:Consider a sequence $x \equiv x \equiv\left(x_{k}\right)=\left(\alpha_{1}, \alpha_{2} . ., \alpha_{n i}, \alpha, \alpha \ldots\right)$
Where $x_{k}=\alpha$ for $k \geq n, \alpha$ is an integer.This is a Cauchy and converges to $\alpha \in X$.
Hint.16: Choose $\left(x_{n}\right)$ when $x_{n}=n$ which is Cauchy but does not converge.

Hint.17: Constant sequence are Cauchy and convergent.

Hint.18: $\quad$ For every $\in>0$,there is an N s.t. for $n>m>N$,
$d\left(x_{n}, x_{m}\right)=\sum_{j=m+1}^{n} \frac{1}{j^{2}}<\epsilon$.
But $\left(x_{n}\right)$ does not converge to any $x=\left(\xi_{j}\right) \in X$
Because $\xi_{j}=0$ for $j>\bar{N}$ so that for $n>\bar{N}$,
$d\left(x_{n}, x\right)=\left|1-\xi_{1}\right|+\left|\frac{1}{4}-\xi_{2}\right|+\ldots+\frac{1}{(N+1)^{2}}+\ldots+\frac{1}{n^{2}}>\frac{1}{(N+1)^{2}}$
And

$$
d\left(x_{n}, x\right) \quad \rightarrow 0 \text { as } n \rightarrow \infty \text { is imposible . }
$$

Hint.19: (Def) A homeomorphism is a continuous bijective mapping.
$T: X \rightarrow Y$ whose inverse is continuous; the metric space $X$ and Y are then said to be homeomorphic.e.g. A mapping $T: R \rightarrow(-1,1)$ defined as $T x=\frac{2}{\pi} \tan ^{-1} x$ with metric $d(x, y)=|x-y|$ on $R$.Clearly $T$ is $1-1$, into \& bi continuous so $R \cong(-1,1)$
But $R$ is complete while $(-1,1)$ is an incomplete metric space.

Hint.20: $\quad \bar{d}=\left(x_{m}, x_{n}\right)<\epsilon<\frac{1}{2}$ then

$$
d\left(x_{m}, x_{n}\right)=\frac{\bar{d}\left(x_{m}, x_{n}\right)}{1-\bar{d}\left(x_{m}, x_{n}\right)}<2 d\left(x_{m}, x_{n}\right) .
$$

Hence if $\left(x_{n}\right)$ is Cauchy is $(X, \bar{d})$, it is Cauchy in $(X, d)$, and its limit in $(X, \bar{d})$.

## Problems on Module-II (Normed and Banach Spaces)

Ex.-1. Let $\left(\mathrm{X},\| \|_{i}\right), \mathrm{i}=1,2, \infty$ be normed spaces of all ordered pairs
$\mathrm{x}=\left(\xi_{1}, \xi_{2}\right), y=\left(\eta_{1}, \eta_{2}\right), \ldots \ldots$ of real numbers where
$\left\|\|_{i}, i=1,2, \infty\right.$ are defined as
$\|x\|_{1}=\left|\xi_{1}\right|+\left|\xi_{2}\right| ;\|x\|_{2}=\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{1 / 2} ;\|x\|_{\infty}=\max \left(\left|\xi_{1}\right|,\left|\xi_{2}\right|\right)$
How does unit sphere in these norms look like?
Ex.-2. Show that the discrete metric on a vector space $X \neq\{0\}$ can not be obtained from a norm.

Ex.-3. In $\ell^{\infty}$, let $\Upsilon$ be the subset of all sequences with only finitely many non zero terms. Show that $\Upsilon$ is a subspace of $\ell^{\infty}$ but not a closed subspace.

Ex.-4. Give examples of subspaces of $\ell^{\infty}$ and $\ell^{2}$ which are not closed.
Ex.-5. Show that $\mathfrak{R}^{n}$ and $\mathbb{C}^{n}$ are not compact.
Ex.-6. Show that a discrete metric space X consisting of infinitely many points is not compact.
Ex.-7. Give examples of compact and non compact curves in the plane $\mathfrak{R}^{2}$.
Ex.-8. Show that $\mathfrak{R}$ and $\mathbb{C}$ are locally compact.
Ex.-9. Let X and Y be metric spaces. X is compact and $T: X \rightarrow Y$ bijective and continuous. Show that T is homeomorphism.

Ex.-10. Show that the operators $\mathrm{T}_{1}, \mathrm{~T}_{2} \ldots, \mathrm{~T}_{4}$ from $\mathrm{R}^{2}$ into $\mathrm{R}^{2}$ defined by $\left(\xi_{1}, \xi_{2}\right) \rightarrow\left(\xi_{1}, 0\right), \rightarrow\left(0, \xi_{2}\right), \rightarrow\left(\xi_{2}, \xi_{1}\right)$ and $\rightarrow\left(\sqrt{\xi_{1}}, \sqrt{\xi_{2}}\right)$ respectively, are linear.

Ex.-11. What are the domain, range and null space of $T_{1}, T_{2}, T_{3}$ in exercise 9 .

Ex.-12. Let $T: X \rightarrow Y$ be a linear operator. Show that the image of a subspace V of X is a vector space, and so is the inverse image of a subspace W of X .

Ex.-13. Let X be the vector space of all complex $2 \times 2$ matrices and define $T: X \rightarrow X$ by $\mathrm{Tx}=\mathrm{bx}$, where $b \in X$ is fixed and bx denotes the usual product of matrices. Show that T is linear. Under what condition does $\mathrm{T}^{-1}$ exist?

Ex.-14. Let $T: D(T) \rightarrow Y$ be a linear operator whose inverse exists. If $\left\{x_{1}, x_{2}, \ldots . ., x_{n}\right\}$ is a Linearly Independant set in $\mathrm{D}(\mathrm{T})$, show that the set $\left\{T x_{1}, T x_{2}, \ldots \ldots . . T x_{n}\right\}$ is L.I.

Ex.-15. Let $T: X \rightarrow Y$ be a linear operator and $\operatorname{dim} \mathrm{X}=\operatorname{dim} \mathrm{Y}=\mathrm{n}<\infty$. Show that $R(T)=Y \Leftrightarrow T^{-1}$ exists.

Ex.-16. Consider the vector space X of all real-valued functions which are defined on R and have derivatives of all orders everywhere on R . Define $T: X \rightarrow X$ by $y(t)=T x(t)=x^{\prime}(t)$,show that $R(T)$ is all of $X$ but $T^{-1}$ does not exist.

Ex.-17. Let X and Y be normed spaces. Show that a linear operator $T: X \rightarrow Y$ is bounded if and only if T maps bounded sets in X into bounded set in Y .

Ex.-18. If $T \neq 0$ is a bounded linear operator, show that for any $x \in D(T)$ s.t. $\|x\|<1$ we have the strict inequality $\|T x\|<\|T\|$.

Ex.-19. Show that the functional defined on $\mathrm{C}[\mathrm{a}, \mathrm{b}]$ by $f_{1}(x)=\int_{a}^{b} x(t) y_{0}(t) d t ; f_{2}(x)=x(a)+\beta x(b)$, where $y_{0} \in C[a, b], \alpha, \beta$ fixed are linear and bounded.

Ex.-20. Find the norm of the linear functional $f$ defined on $\mathrm{C}[-1,1]$ by $f(x)=\int_{-1}^{0} x(t) d t-\int_{0}^{1} x(t) d t$.

## HINTS (Problems on Module-II)

Hint.1:


Hint.2:
$\because d(x, y)=\left\{\begin{array}{lll}0 & \text { if } & x=y \\ 1 & \text { if } & x \neq y\end{array} \quad\right.$, where $\quad d(\alpha x, \alpha y) \neq|\alpha| d(x, y)$
Hint.3: Let $x^{(n)}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots \ldots .1 / n, 0,0 \ldots ..\right)=\left(x_{j}^{(n)}\right)$ where $x_{j}^{(n)}$ has 0 value after $\mathrm{j}>\mathrm{n}$.
Clearly $x^{(\eta)} \in \ell^{\infty}$ as well as $x^{(\eta)} \in \Upsilon$ but $\lim _{n \rightarrow \infty} x^{(\eta)} \notin \Upsilon$.
Hint.4: Let $\Upsilon$ be the subset of all sequences with only finitely many non zero terms.
e.g. $\Upsilon=\left\{x^{(n)}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots \ldots \frac{1}{n}, 0, \ldots \ldots ..\right), n=1,2, \ldots ..\right\} \subset \ell^{\infty} \& \subset \ell^{2}$ but not closed.

Hint.6: By def. of Discrete metric, any sequences $\left(x_{n}\right)$ cannot have convergent subsequence as $d\left(x_{i}, x_{j}\right)=1$ if $i \neq j$.

Hint.7: As $\mathfrak{R}^{2}$ is of finite dimension, So every closed \& bounded set is compact.
Choose $X=\left\{(x, y)=a_{1} \leq x \leq b_{1,}, a_{2} \leq x \leq b_{1}\right\}$ which is compact
But $\left\{(x, y)=a_{1}<x<b_{1}, a_{1}<y<b_{2}\right\}$ is not compact.
Hint.8: (def.) A metric space X is said to be locally compact if every point of X has a compact neighbourhood. Result follows (obviously).

Hint.9: Only to show $\mathrm{T}^{-1}$ is continuous i.e. Inverse image of open set under $\mathrm{T}^{-1}$ is open. OR. If $\gamma_{n} \rightarrow \gamma$. Then $\mathrm{T}^{-1}\left(\gamma_{n}\right) \rightarrow \mathrm{T}^{-1}(\gamma)$. It will follow from the fact that X is compact.

Hint.11: The domain is $\mathfrak{R}^{2}$.The ranges are the $\xi_{1}$-axis, the $\xi_{2}$-axis , $\mathfrak{R}^{2}$. The null spaces are the $\xi_{2}$-axis, the $\xi_{1}$-axis, the origin.

Hint.12. Let $T x_{1}, T x_{2} \in T(V)$.Then $x_{1}, x_{2} \in V, \alpha x_{1}+\beta x_{2} \in V$. Hence $T\left(\alpha x_{1}+\beta x_{2}\right)=\alpha T x_{1}+\beta T x_{2} \in T(V)$. Let $x_{1}, x_{2}$ be in that inverse image. Then $T x_{1}, T x_{2} \in W, \alpha T x_{1}+\beta T x_{2} \in W, \alpha T x_{1}+\beta T x_{2}=T\left(\alpha x_{1}+\beta x_{2}\right)$, so that $\alpha x_{1}+\beta x_{2}$ is an element of that inverse image.

Hint.13. $|b| \neq 0$
Hint. 14. If $\left\{T x_{1}, T x_{2}, \ldots . . . T x_{n}\right\}$ is not L.I. then $э$ some $\alpha_{i} \neq 0$ $\alpha_{1} T x_{1}+\ldots . .+\alpha_{i} T x_{i}+. .+\alpha_{n} T x_{n}=0$. Since $\mathrm{T}^{-1}$ exists and linear, $T^{-1}\left(\alpha_{1} T x_{1}+\ldots+\alpha_{n} T x_{n}\right)=\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}=0$ when $\alpha_{i} \neq 0$ which shows $\left\{x_{1}, x_{2}, \ldots ., x_{n}\right\}$ is L.D., a contradiction.

Hint.16: $\mathrm{R}(\mathrm{T})=\mathrm{X}$ since for every $y \in X$ we have $\mathrm{y}=\mathrm{Tx}$, where $x(t)=\int_{0}^{t} y(\tau) d \tau$. But n $\mathrm{T}^{-1}$ does not exist since $\mathrm{T}=0$ for every constant function.

Hint.17: Apply definition of bounded operator.
Hint.18: Since $\|T x\|=\|T\| .\|x\|<\|T\|$ as $\|x\|<1$.
Hint.20: $|f(x)| \leq 2\|x\|, \therefore\|f\| \leq 2$. For converse, choose $x(t)=-1$ on $[-1,1]$. So

$$
\begin{aligned}
& \|x\|=1 \\
& \|f\| \geq\left|-\int_{-1}^{0} d t+\int_{0}^{1} d t\right|=2 \quad \therefore\|f\|=2
\end{aligned}
$$

## Problems on Module III (IPS/Hilbert space)

Ex.-1. If $x \perp y$ in an IPS $X$, Show that $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$.
Ex.-2. If X in exercise 1 is a real vector space, show that ,conversely, the given relation implies that $x \perp y$. Show that this may not hold if X is complex. Give examples.

Ex,-3. If an IPS X is real vector space, show that the condition $\|x\|=\|y\|$ implies $\langle x+y, x-y\rangle=0$. What does this mean geometrically if $\mathrm{X}=\mathrm{R}^{2}$ ?

Ex.-4. (Apollonius identity): For any elements $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in an IPS X , show that $\|z-x\|^{2}+\|z-y\|^{2}=\frac{1}{2}\|x-y\|^{2}+2 \| z-\frac{1}{2}\left(x+y \|^{2}\right.$.

Ex.-5. Let $x \neq 0$ and $y \neq 0$. If $x \perp y$,show that $\{\mathrm{x}, \mathrm{y}\}$ is a Linearly Independent set.
Ex.-6. If in an IPS $\mathrm{X},\langle x, u\rangle=\langle x, v\rangle$ for all x , show that $\mathrm{u}=\mathrm{v}$.
Ex.-7. Let X be the vector space of all ordered pairs of complex numbers. Can we obtain the norm defined on X by $\|x\|=\left|\xi_{1}\right|+\left|\xi_{2}\right|, x=\left(\xi_{1}, \xi_{2}\right) \in X$ from an Inner product?

Ex.-8. If X is a finite dimensional vector space and $\left(e_{j}\right)$ is a basis for X , show that an inner product on X is completely determined by its values $\gamma_{j k}=\left\langle e_{j}, e_{k}\right\rangle$. Can we choose scalars $\gamma_{j k}$ in a completely arbitrary fashion?

Ex.-9. Show that for a sequence $\left(x_{n}\right)$ in an IPS X , the conditions $\left\|x_{n}\right\| \rightarrow\|x\|$ and $<x_{n}, x>\rightarrow<x, x>$ imply convergence $x_{n} \rightarrow x$.

Ex.-10. Show that in an IPS X, $x \perp y \Leftrightarrow$ we have $\|x+\alpha y\|=\|x-\alpha y\|$ for all scalars $\alpha$.

Ex.-11. Show that in an IPS X, $x \perp y \Leftrightarrow\|x+\alpha y\| \geq\|x\|$ for all scalars.
Ex.-12. Let V be the vector space of all continuous complex valued functions on $\mathrm{J}=[\mathrm{a}, \mathrm{b}]$. Let $X_{1}=\left(V,\|. . .\|_{\infty}\right)$, where $\|x\|_{\infty}=\max _{t \in J}|x(t)|$; and let $X_{2}=\left(V,\|\ldots\|_{2}\right)$, where $\|x\|_{2}=\langle x, x\rangle^{\frac{1}{2}},\langle x, y\rangle=\int_{a}^{b} x(t) \overline{y(t)} d t$. Show that the identity mapping $x \mapsto x$ of $\mathrm{X}_{1}$ onto $\mathrm{X}_{2}$ is continuous. Is it Homeomorphism?

Ex.-13. Let H be a Hilbert space, $M \subset H$ a convex subset, and $\left(\mathrm{x}_{\mathrm{n}}\right)$ is a sequence in M
such that $\left\|x_{n}\right\| \rightarrow d$, where $d=\inf _{x \in M}\|x\|$. Show that $\left(\mathrm{x}_{\mathrm{n}}\right)$ converges in H .
Ex.-14. If $\left(\mathrm{e}_{\mathrm{k}}\right)$ is an orthonormal sequence in an IPS X , and $\mathrm{x} \in X$, show that $\mathrm{x}-\mathrm{y}$ with y given by $y=\sum_{1}^{n} \alpha_{k} e_{k}, \alpha_{k}=<x, e_{k}>$ is orthogonal to the subspace $Y_{n}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots . ., e_{n}\right\}$.

Ex.-15. Let $\left(\mathrm{e}_{\mathrm{k}}\right)$ be any orthonormal sequence in an IPS X. Show that for any $x, y \in X$, $\sum_{k_{=1}}^{\infty}\left|<x, e_{k}><y, e_{k}>\right| \leq\|x\|\|y\|$.
Ex.-16. Show that in a Hilbert Space H, convergence of $\sum\left\|x_{j}\right\|$ implies convergence of $\sum x_{j}$

## Hints on Problems on Module III

Hint.1: Use $\|x\|^{2}=\langle x, x\rangle$ and the fact that $\langle x, y\rangle=0$, if $x \perp y$.
Hint. 2 : By Assumption,

$$
0=\langle x+y, x+y\rangle-\|x\|^{2}-\|y\|^{2}=\langle x, y\rangle+\overline{\langle x, y\rangle}=2 \operatorname{Re}\langle x, y\rangle
$$

Hint.3: Start $\langle x+y, x-y\rangle=\langle x, x\rangle+\langle y,-y\rangle=\|x\|^{2}-\|y\|^{2}=0$ as X is real.
Geometrically: If $\mathrm{x} \& \mathrm{y}$ are the vectors representing the sides of a parallelogram, then $\mathrm{x}+\mathrm{y}$ and $\mathrm{x}-\mathrm{y}$ will represent the diagonal which are $\perp$.


Hint 4: Use $\|x\|^{2}=<x, x>$ OR use parallelogram equality.
Hint.5: Suppose $\alpha_{1} x+\alpha_{2} y=0$ where $\alpha_{1}, \alpha_{2}$ are scalars. Consider
$\left.\left\langle\alpha_{1} x+\alpha_{2} y, x\right\rangle=<0, x\right\rangle$
$\Rightarrow \alpha_{1}\|x\|^{2}=0$ as $\langle x, y\rangle=0$.
$\Rightarrow \alpha_{1}=0$ as $\|x\| \neq 0$.Similarly, one can show that $\alpha_{2}=0$. So $\{\mathrm{x}, \mathrm{y}\}$ is L.I.set.
Hint. 6 : Given $\langle x, u-v\rangle=0$. Choose $\mathrm{x}=\mathrm{u}-\mathrm{v}$.

$$
\Rightarrow\|u-v\|^{2}=0 \Rightarrow u=v
$$

Hint. 7: No. because the vectors $x=(1,1), y=(1,-1)$ do not satisfy parallelogram equality.
Hint.8: Use $\mathrm{x}=\sum_{1}^{n} \alpha_{i} e_{i} \& y=\sum_{j=1}^{n} \alpha_{j} e_{j}$. Consider $\left.\langle x, y\rangle=<\sum_{i=1}^{n} \alpha_{i} e_{i} \sum_{j=1}^{n} \alpha_{j} e_{j}\right\rangle$.
Open it so we get that it depends on $\quad \gamma_{j k}=<e_{j}, e_{k}>$
II Part: Answer:- NO. Because $\gamma_{j k}=\left\langle e_{j}, e_{k}\right\rangle=\left\langle\overline{e_{k}, e_{j}}\right\rangle=\overline{\gamma_{k j}}$.
Hint.9: We have

$$
\begin{aligned}
& \left\|x_{n}-x\right\|^{2}=<x_{n}-x, x_{n}-x> \\
& =\left\|x_{n}\right\|^{2}-<x_{n}, x>-<x, x_{n}>+\|x\|^{2} \\
& \Rightarrow 2\|x\|^{2}-2<x, x>=0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hint. 10 : From
$\left.\left\langle x \pm \alpha y, x \pm \alpha y>=\|x\|^{2} \pm \bar{\alpha}<x, y> \pm \alpha<y, x>+\right| \alpha\right|^{2}\|y\|^{2}$ condition follows as $x \perp y$.
Conversely, $\|x+\alpha y\|=\|x-\alpha y\|$

$$
\Rightarrow \bar{\alpha}\langle x, y>+\alpha<y, x\rangle=0 .
$$

Choose $\alpha=1$ if the space is real which implies $x \perp y$.
Choose $\alpha=1, \alpha=i$, if the space is complex then we get $\langle x, y\rangle=0 \Rightarrow x \perp y$.
Hint. 11 : Follows from the hint given in Ex.-10.
Hint. 12 : Since
$\|x\|_{2}^{2}=\int_{a}^{b}|x(t)|^{2} d t \leq(b-a)\|x\|_{\infty}^{2}-\cdots---(\mathrm{A})$
Suppose $x_{n} \rightarrow 0$ in $\mathrm{X}_{1}$ i.e. $\left\|x_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$.
So by (A), $x_{n} \xrightarrow[\text { will }]{X_{2}} 0$.
Hence $I$ is continuous.
Part-II: Answer No. because $\mathrm{X}_{2}$ is not complete.
Hint. 13 : $\left(\mathrm{x}_{\mathrm{n}}\right)$ is Cauchy, since from the assumption and the parallelogram equality, we have,
$\left\|x_{n}-x_{m}\right\|^{2}=2\left\|x_{m}\right\|^{2}+2\left\|x_{n}\right\|^{2}-\left\|x_{n}+x_{m}\right\|^{2}$
$\leq 2\left\|x_{m}\right\|^{2}+2\left\|x_{n}\right\|^{2}-4 d^{2}$ (since M is convex so
$\left.\frac{x_{n}+x_{m}}{2} \in M \therefore\left\|\frac{x_{n}+x_{m}}{2}\right\|^{2} \geq d^{2} \because \inf \left\|x_{n}\right\|=d, x_{n} \in M\right)$.
Hint. 14 : $y \in Y_{n}, x=y+(x-y)$, and $x-y \perp e_{m}$,

$$
\begin{aligned}
\text { Since } & <x-y, e_{m}>=<x-\sum \alpha_{k} e_{k}, e_{m}> \\
& =<x, e_{m}>-\alpha_{m}=0 .
\end{aligned}
$$

Hint.15: Use Cauchy Schwaz's Inequality \& Bessel's Inequality, we get

$$
\sum\left|<x, e_{k}><y, e_{k}>\right|=\left(\sum\left|<x_{1} e_{k}>\right|^{2}\right)^{\frac{1}{2}}\left(\sum\left|<y, e_{k}>\right|^{2}\right)^{\frac{1}{2}} \leq\|x\|\|y\| .
$$

Hint.16: Let $\delta_{n}=x_{1}+x_{2}+\ldots .+x_{n}$

$$
\left\|\delta_{n}-\delta_{m}\right\| \leq \sum_{j=m}^{n}\left\|x_{j}\right\| \leq \sum_{j=m}^{\infty}\left\|x_{j}\right\| \rightarrow 0 \text { as } m \rightarrow \infty \text {.So }
$$

$\left(\delta_{n}\right)$ is a Cauchy. Since H is complete, hence $\left(\delta_{n}\right)$ will converge .
$\therefore \sum x_{j}$ converge in H .

## Problems On Module IV (On Fundamental theorems)

Ex.1. Let $f_{n}: \ell^{1} \rightarrow R$ be a sequence of bounded linear functionals defined as $f_{n}(x)=\xi_{n}$ where $x=\left(\xi_{n}\right) \in \ell^{1}$. show that $\left(f_{n}\right)$ converge strongly to 0 but not uniformly.

Ex.2. Let $T_{n} \in B(X, Y)$ where $X$ is a Banach space and $Y$ a normed space. If $\left(T_{n}\right)$ is strongly convergent with limit $T$, then $T \in B(X, Y)$.
Ex.3. If $x_{n} \in C[a, b]$ and $x_{n} \xrightarrow{\omega} x \in C[a, b]$. Show that $\left(x_{n}\right)$ is point wise convergent on $[a, b]$.
Ex.4. If $x_{n} \xrightarrow{\omega} x_{o}$ in a normed space X . Show that $x_{o} \in \bar{Y}$, Where $\mathrm{Y}=\operatorname{span}\left(x_{n}\right)$.
Ex.5. Let $T_{n}=S^{n}$, where the operator $S: \ell^{2} \rightarrow \ell^{2}$ is defined by $S\left\{\left(\xi_{n}, \xi_{2}, \xi_{3} \ldots\right)\right\}=\left(\xi_{3}, \xi_{4} \ldots\right)$.
Find a bound for $\left\|T_{n} x\right\| ; \lim _{n \rightarrow \infty}\left\|T_{n} x\right\|, \quad\left\|T_{n}\right\|$ and $\lim _{n \rightarrow \infty}\left\|T_{n}\right\|$.
Ex.6. Let $X$ be a Banach space, $Y$ a normed space and $T_{n} \in B(X, Y)$ such that $\left(T_{n} x\right)$ is Cauchy in Y for every $x \in X$. show that $\left(\left\|T_{n}\right\|\right)$ is bounded.

Ex.7. If $\left(x_{n}\right)$ in a Banach space $X$ is such that $\left(f\left(x_{n}\right)\right)$ is bounded for all $f \in X^{\prime}$. Show that $\left(\left\|x_{n}\right\|\right)$ is bounded.

Ex.8. If a normed space X is reflexive, Show that $X^{\prime}$ is reflexive.
Ex.9. If $x_{o}$ in a normed space $X$ is such that $\left|f\left(x_{o}\right)\right| \leq c$ for all $f \in X^{\prime}$ of norm1.show that $\left\|x_{o}\right\| \leq c$.

Ex.10. Let Y be a closed sub space of a normed space X such that every $f \in X^{\prime}$ which is zero every where on Y is zero every where on the whole space X . Show that $Y=X$

Ex.11. Prove that $(S+T)^{\times}=S^{\times}+T^{\times} ;(\alpha T)^{\times} ;(\alpha T)^{\times}=\alpha T^{\times}$ Where $T^{\times}$is the adjoint operator of T .

Ex.12. Prove $(S T)^{\times}=T^{\times} S^{\times}$

Ex.13. $\quad$ Show that $\left(T^{n}\right)^{\times}=\left(T^{\times}\right)^{n}$.
Ex.14. Of what category is the set of all rational number $(a)$ in $\mathbb{R},(b)$ in itself, (Taken usual metric).

Ex.15. Find all rare sets in a discrete metric space X.
Ex.16. Show that a subset M of a metric space X is rare in X if and only if is $\left(\bar{M}^{-}\right)^{c}$ is dense in X .
Ex.17. Show that completeness of X is essential in uniform bounded ness theorem and cannot be omitted.

## Hints on Problems On Module IV

Hint.1: Since $x \in \ell^{1} \Rightarrow \sum_{1}^{\infty}\left|\xi_{n}\right|<\infty \Rightarrow\left|\xi_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.
ie $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ but $\left\|f_{n}\right\|=1 \rightarrow 0$.

Hint. $2 \quad T$ linear follows

$$
\lim _{n \rightarrow \infty} T_{n}(\alpha x+p y)=\lim _{n \rightarrow \infty}\left\{\left(\alpha T_{n} x\right)+\left(\beta T_{n} x\right)\right\} \Rightarrow T(\alpha x+\beta y)=\alpha T x+\beta T y .
$$

$T$ is bounded :- Since $T_{n} \xrightarrow{s} T$ i.e. $\left\|\left(T_{n}-T\right) x\right\| \rightarrow 0$ for all $x \in X$.
So $\left(T_{n} x\right)$ is bounded for every $x$. Since X is complete, so $\left(\left\|T_{n}\right\|\right)$ is bounded by uniform bounded ness theorem. Hence
$\left\|T_{n} x\right\| \leq\left\|T_{n}\right\|\|x\| \leq M\|x\|$. Taking limit $\Rightarrow T$ is bounded.
Hint .3: A bounded linear functional on $C[a, b]$ is $\delta_{t_{0}}$ defined by $\delta_{t_{o}}(x)=x\left(t_{o}\right)$, when $t_{o} \in[a, b]$.

Given $x_{n} \xrightarrow{\omega} x \Rightarrow\left|\delta_{t_{o}}\left(x_{n}\right)-\delta_{t_{o}}(x)\right| \rightarrow 0$ as $n \rightarrow \infty \Rightarrow x_{n}\left(t_{o}\right) \rightarrow x\left(t_{o}\right)$ as $n \rightarrow \infty$.
Hint. 4 : Use Lemma:- ''Let $Y$ be a proper closed sub-space of a normed space $X$ and let $x_{o} \in X-Y$ be arbitrary point and $\delta=\inf _{\bar{y} \in Y}\left\|\bar{y}-x_{o}\right\|>0$, then there exists an $\bar{f} \in X^{\prime}$, dual of X such that

$$
\|\bar{f}\|=1, \bar{f}(y)=0 \quad \text { for all } y \in Y \text { and } \bar{f}\left(x_{o}\right)=\delta . ’
$$

suppose $x_{o} \notin Y$ which is a closed sub space of $X$. so by the above result,
for $x \in X-Y, \delta=\inf _{\tilde{y} \in Y}\left\|\bar{y}-x_{o}\right\|>0$, hence there exists $\bar{f} \in X^{\prime}$ s.t. $\|\tilde{f}\|=1 \& \bar{f}\left(x_{n}\right)=0$ for $x_{n} \in \bar{Y}$. Also $\bar{f}\left(x_{o}\right)=\delta$. So $\bar{f}\left(x_{n}\right) \nrightarrow f\left(x_{o}\right)$ which is a contradiction that $x_{n} \xrightarrow{\omega} x_{o .}$.

Hint. $5: \quad T_{n}=S^{n} . T_{n}(x)=\left(\xi_{2 n+1}, \xi_{2 n+2}, \ldots.\right)$
(i) $\left\|T_{n} x\right\|^{2}=\sum_{k=2 n+1}^{\infty}\left|\xi_{k}\right|^{2} \leq \sum_{k=1}^{\infty}\left|\xi_{k}\right|^{2}=\|x\|^{2} \Rightarrow\left\|T_{n} x\right\| \leq\|x\|$.
(ii) $\lim _{n \rightarrow \infty}\left\|T_{n} x\right\|=0$.
(iii) $\left\|T_{n}\right\| \leq 1$ as $\left\|T_{n} x\right\| \leq\|x\|$. For converse, choose $x=\left(0,0, . .{ }_{(2 n+1) p l a c e}^{1}, 0 \ldots.\right)$ so $\left\|T_{n}\right\| \geq 1$.
$\therefore\left\|T_{n}\right\|=1$.
(v) $\lim _{n \rightarrow \infty}\left\|T_{n}\right\|=1$.

Hint. 6 : Since $\left(T_{n} x\right)$ is Cauchy in Y for every x , so it is bounded for each $x \in X$. Hence by uniform bounded ness theorem, $\left(\left\|T_{n}\right\|\right)$ is bounded.

Hint. 7 : Suppose $f\left(x_{n}\right)=g_{n}(f)$. Then $\left\{g_{n}(f)\right\}$ is bounded for every $f \in X^{\prime}$. So by uniform bounded ness theorem $\left(\left\|g_{n}\right\|\right)$ is bounded and $\left\|x_{n}\right\|=\left\|g_{n}\right\|$.

Hint. 8 : Let $h \in X^{\prime \prime \prime}$. For every $g \in X^{\prime \prime}$ there is an $x \in X$ such that $g=C x$ since $X$ is reflexive. Hence $h(g)=h(C x)=f(x)$ defines a bounded linear functional $f$ on $X$ and $C_{1} f=h$, where $C_{1}: X^{\prime} \rightarrow X^{\prime \prime \prime}$ is the canonical mapping. Hence $C_{1}$ is surjective, so that $X^{\prime}$ is reflexive.

Hint. 9: suppose $\left\|x_{o}\right\|>c$. Then by Lemma: Let X be a normed space and let $x_{o} \neq 0$ be any element of $X$. Then there exist a bounded linear functional $\tilde{f}$ on Xs.t. $\|\tilde{f}\|=1 \& \tilde{f}\left(x_{o}\right)=\left\|x_{o}\right\|$. $\left\|x_{o}\right\|>c$ would imply the existence of an $\tilde{f} \in X^{\prime}$ s.t. $\|\tilde{f}\|=1$ and $\tilde{f}\left(x_{o}\right)=\left\|x_{o}\right\|>c$.

Hint. 10 : If $Y \neq X$, there is an $x_{o} \in X-Y$, and $\delta=\inf _{y \in Y}\left\|y-x_{o}\right\|>0$ since Y is closed.
Use the Lemma as given in Ex 4 (Hint) .
By this Lemma, there is on $\tilde{f} \in X^{\prime}$ which is zero on Y but not zero at $x_{o}$, which contradicts our assumption.

Hint. 11: $\left((S+T)^{\times} g\right)(x)=g((S+T) x)=g(S x)+g(T x)=\left(S^{\times} g\right)(x)+\left(T^{\times} g\right)(x)$. Similarly others.
Hint. 12 : $\left((S T)^{\times} g\right)(x)=g(S T x)=\left(S^{\times} g\right)(T x)=\left(T^{\times}\left(S^{\times} g\right)\right)(x)=\left(T^{\times} S^{\times} g\right)(x)$.
Hint. 13 : Follows from Induction.
Hint 14 : ( $a)$ first (b) first.
Hint. 15 : $\phi$, because every subset of X is open.
Hint. 16 : The closure of $(\bar{M})^{c}$ is all of X if and if $\bar{M}$ has no interior points, So that every $x \in \bar{M}$ is a point of accumulation of $(\bar{M})^{c}$.
Hint.17: Consider the sub space $X \subset \ell^{\infty}$ consisting of all $x=\left(\xi_{j}\right)$ s.t. $\xi_{j}=0$ for $j \geq J \in \mathbb{N}$, where $J$ depends on $x$, and let $T_{n}$ be defined by $T_{n} x=f_{n}(x)=n \quad \xi_{n}$.
Clearly $\left(\left\|T_{n} X\right\|\right)$ is bounded $\forall x$ but $\left\|T_{n}\right\|$ is not bounded.

